Fluconazole resistance associated with drug efflux and increased transcription of a drug transporter gene, PDH1, in Candida glabrata.
نویسندگان
چکیده
Sequential Candida glabrata isolates were obtained from the mouth of a patient infected with human immunodeficiency virus type 1 who was receiving high doses of fluconazole for oropharyngeal thrush. Fluconazole-susceptible colonies were replaced by resistant colonies that exhibited both increased fluconazole efflux and increased transcripts of a gene which codes for a protein with 72.5% identity to Pdr5p, an ABC multidrug transporter in Saccharomyces cerevisiae. The deduced protein had a molecular mass of 175 kDa and was composed of two homologous halves, each with six putative transmembrane domains and highly conserved sequences of ATP-binding domains. When the earliest and most azole-susceptible isolate of C. glabrata from this patient was exposed to fluconazole, increased transcripts of the PDR5 homolog appeared, linking azole exposure to regulation of this gene.
منابع مشابه
Jjj1 Is a Negative Regulator of Pdr1-Mediated Fluconazole Resistance in Candida glabrata
The high prevalence of fluconazole resistance among clinical isolates of Candida glabrata has greatly hampered the utility of fluconazole for the treatment of invasive candidiasis. Fluconazole resistance in this yeast is almost exclusively due to activating mutations in the transcription factor Pdr1, which result in upregulation of the ABC transporter genes CDR1, PDH1, and SNQ2 and therefore in...
متن کاملAzole resistance in Candida glabrata: coordinate upregulation of multidrug transporters and evidence for a Pdr1-like transcription factor.
Candida glabrata has emerged as a common cause of fungal infection. This yeast has intrinsically low susceptibility to azole antifungals such as fluconazole, and mutation to frank azole resistance during treatment has been documented. Potential resistance mechanisms include changes in expression or sequence of ERG11 encoding the azole target. Alternatively, resistance could result from upregula...
متن کاملInteractions between copy number and expression level of genes involved in fluconazole resistance in Candida glabrata
OBJECTIVES This study aimed to elucidate the relative involvement of drug resistance gene copy number and overexpression in fluconazole resistance in clinical C. glabrata isolates using a population-based approach. METHODS Fluconazole resistance levels were quantified using the minimal inhibitory concentration (MIC) via Etest method. Both gene expression levels and gene copy number of CgCDR1,...
متن کاملSTB5 is a negative regulator of azole resistance in Candida glabrata.
The opportunistic yeast pathogen Candida glabrata is recognized for its ability to acquire resistance during prolonged treatment with azole antifungals (J. E. Bennett, K. Izumikawa, and K. A. Marr. Antimicrob. Agents Chemother. 48:1773-1777, 2004). Resistance to azoles is largely mediated by the transcription factor PDR1, resulting in the upregulation of ATP-binding cassette (ABC) transporter p...
متن کاملHeteroresistance to Fluconazole Is a Continuously Distributed Phenotype among Candida glabrata Clinical Strains Associated with In Vivo Persistence
UNLABELLED Candida glabrata causes persistent infections in patients treated with fluconazole and often acquires resistance following exposure to the drug. Here we found that clinical strains of C. glabrata exhibit cell-to-cell variation in drug response (heteroresistance). We used population analysis profiling (PAP) to assess fluconazole heteroresistance (FLC(HR)) and to ask if it is a binary ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 42 7 شماره
صفحات -
تاریخ انتشار 1998